Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
De_León, Luis F; Connallon, Tim (Ed.)Abstract Parallel evolution of the same reproductive isolation barrier within a taxon is an indicator of ecology’s role in speciation (i.e., parallel speciation), yet spatiotemporal variability in the efficacy of the barrier can present challenges to retracing how it evolved. Here, we revisit the evidence for a candidate example of parallel speciation in a clade of scincid lizards (the Plestiodon skiltonianus complex) using genomic data, with emphasis on determining whether hybridization may have confounded the phylogenetic signals of parallelism for this group. Our results show a striking case of genealogical discordance, in which mitochondrial loci support multiple origins of a derived large-bodied morphotype (Plestiodon gilberti) within a small-bodied ancestor (Plestiodon skiltonianus), whereas nuclear loci indicate a single origin. We attribute the discordance to separate, temporally-spaced hybridization events that led to asymmetric capture of P. skiltonianus mitochondria in different regional lineages of P. gilberti. Nuclear introgression showed a similar directional bias but was less pervasive. We demonstrate how a mechanical reproductive barrier previously identified for this group explains the asymmetry of mitochondrial introgression, given that hybrid matings are most likely when the male is P. gilberti and the female is P. skiltonianus. We then use permutation tests of morphological data to provide evidence that the mechanical barrier is less stringent in areas where hybridization is inferred to have occurred. Our results demonstrate how biased hybridization can dictate which genetic variants are transmitted between species and emphasize the importance of accounting for introgression and deep coalescence in identifying phyletic signatures of parallel speciation.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Fraser, Bonnie (Ed.)Abstract Over 400 million years old, scorpions represent an ancient group of arachnids and one of the first animals to adapt to life on land. Presently, the lack of available genomes within scorpions hinders research on their evolution. This study leverages ultralong nanopore sequencing and Pore-C to generate the first chromosome-level assembly and annotation for the desert hairy scorpion, Hadrurus arizonensis. The assembled genome is 2.23 Gb in size with an N50 of 280 Mb. Pore-C scaffolding reoriented 99.6% of bases into nine chromosomes and BUSCO identified 998 (98.6%) complete arthropod single copy orthologs. Repetitive elements represent 54.69% of the assembled bases, including 872,874 (29.39%) LINE elements. A total of 18,996 protein-coding genes and 75,256 transcripts were predicted, and extracted protein sequences yielded a BUSCO score of 97.2%. This is the first genome assembled and annotated within the family Hadruridae, representing a crucial resource for closing gaps in genomic knowledge of scorpions, resolving arachnid phylogeny, and advancing studies in comparative and functional genomics.more » « less
-
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus . Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.more » « less
An official website of the United States government
